3.4.17 \(\int \cot ^4(e+f x) (a+b \tan ^2(e+f x))^{3/2} \, dx\) [317]

3.4.17.1 Optimal result
3.4.17.2 Mathematica [C] (verified)
3.4.17.3 Rubi [A] (verified)
3.4.17.4 Maple [B] (warning: unable to verify)
3.4.17.5 Fricas [A] (verification not implemented)
3.4.17.6 Sympy [F]
3.4.17.7 Maxima [F]
3.4.17.8 Giac [F(-1)]
3.4.17.9 Mupad [F(-1)]

3.4.17.1 Optimal result

Integrand size = 25, antiderivative size = 115 \[ \int \cot ^4(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\frac {(a-b)^{3/2} \arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}+\frac {(3 a-4 b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{3 f}-\frac {a \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{3 f} \]

output
(a-b)^(3/2)*arctan((a-b)^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))/f+1/3* 
(3*a-4*b)*cot(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2)/f-1/3*a*cot(f*x+e)^3*(a+b*ta 
n(f*x+e)^2)^(1/2)/f
 
3.4.17.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.43 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.68 \[ \int \cot ^4(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=-\frac {\cot (e+f x) \left (b+a \cot ^2(e+f x)\right ) \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},1,-\frac {1}{2},-\frac {(a-b) \tan ^2(e+f x)}{a+b \tan ^2(e+f x)}\right ) \sqrt {a+b \tan ^2(e+f x)}}{3 f} \]

input
Integrate[Cot[e + f*x]^4*(a + b*Tan[e + f*x]^2)^(3/2),x]
 
output
-1/3*(Cot[e + f*x]*(b + a*Cot[e + f*x]^2)*Hypergeometric2F1[-3/2, 1, -1/2, 
 -(((a - b)*Tan[e + f*x]^2)/(a + b*Tan[e + f*x]^2))]*Sqrt[a + b*Tan[e + f* 
x]^2])/f
 
3.4.17.3 Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.98, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4153, 376, 25, 445, 27, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^4(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \tan (e+f x)^2\right )^{3/2}}{\tan (e+f x)^4}dx\)

\(\Big \downarrow \) 4153

\(\displaystyle \frac {\int \frac {\cot ^4(e+f x) \left (b \tan ^2(e+f x)+a\right )^{3/2}}{\tan ^2(e+f x)+1}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 376

\(\displaystyle \frac {\frac {1}{3} \int -\frac {\cot ^2(e+f x) \left ((2 a-3 b) b \tan ^2(e+f x)+a (3 a-4 b)\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)-\frac {1}{3} a \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {-\frac {1}{3} \int \frac {\cot ^2(e+f x) \left ((2 a-3 b) b \tan ^2(e+f x)+a (3 a-4 b)\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)-\frac {1}{3} a \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{f}\)

\(\Big \downarrow \) 445

\(\displaystyle \frac {\frac {1}{3} \left (\frac {\int \frac {3 a (a-b)^2}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)}{a}+(3 a-4 b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}\right )-\frac {1}{3} a \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{3} \left (3 (a-b)^2 \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a}}d\tan (e+f x)+(3 a-4 b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}\right )-\frac {1}{3} a \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {1}{3} \left (3 (a-b)^2 \int \frac {1}{1-\frac {(b-a) \tan ^2(e+f x)}{b \tan ^2(e+f x)+a}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a}}+(3 a-4 b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}\right )-\frac {1}{3} a \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {1}{3} \left (3 (a-b)^{3/2} \arctan \left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )+(3 a-4 b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}\right )-\frac {1}{3} a \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)}}{f}\)

input
Int[Cot[e + f*x]^4*(a + b*Tan[e + f*x]^2)^(3/2),x]
 
output
(-1/3*(a*Cot[e + f*x]^3*Sqrt[a + b*Tan[e + f*x]^2]) + (3*(a - b)^(3/2)*Arc 
Tan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]] + (3*a - 4*b)*C 
ot[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2])/3)/f
 

3.4.17.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 376
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> Simp[c*(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1 
)/(a*e*(m + 1))), x] - Simp[1/(a*e^2*(m + 1))   Int[(e*x)^(m + 2)*(a + b*x^ 
2)^p*(c + d*x^2)^(q - 2)*Simp[c*(b*c - a*d)*(m + 1) + 2*c*(b*c*(p + 1) + a* 
d*(q - 1)) + d*((b*c - a*d)*(m + 1) + 2*b*c*(p + q))*x^2, x], x], x] /; Fre 
eQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && LtQ[m, -1] & 
& IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 445
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_ 
.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^2)^(p 
+ 1)*((c + d*x^2)^(q + 1)/(a*c*g*(m + 1))), x] + Simp[1/(a*c*g^2*(m + 1)) 
 Int[(g*x)^(m + 2)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*f*c*(m + 1) - e*(b*c 
+ a*d)*(m + 2 + 1) - e*2*(b*c*p + a*d*q) - b*e*d*(m + 2*(p + q + 2) + 1)*x^ 
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && LtQ[m, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4153
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], 
 x]}, Simp[c*(ff/f)   Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2 + f 
f^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, 
n, p}, x] && (IGtQ[p, 0] || EqQ[n, 2] || EqQ[n, 4] || (IntegerQ[p] && Ratio 
nalQ[n]))
 
3.4.17.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(666\) vs. \(2(101)=202\).

Time = 4.79 (sec) , antiderivative size = 667, normalized size of antiderivative = 5.80

method result size
default \(-\frac {\left (4 \sin \left (f x +e \right )^{2} \sqrt {a -b}\, \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, b -3 \sin \left (f x +e \right ) a^{2} \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {a -b}}\right ) \cos \left (f x +e \right )+6 \sin \left (f x +e \right ) a b \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {a -b}}\right ) \cos \left (f x +e \right )-3 \sin \left (f x +e \right ) b^{2} \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {a -b}}\right ) \cos \left (f x +e \right )+4 \cos \left (f x +e \right )^{2} \sqrt {a -b}\, \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, a +3 \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {a -b}}\right ) a^{2} \sin \left (f x +e \right )-6 \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {a -b}}\right ) a b \sin \left (f x +e \right )+3 \arctan \left (\frac {\sqrt {\frac {a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \left (\cot \left (f x +e \right )+\csc \left (f x +e \right )\right )}{\sqrt {a -b}}\right ) b^{2} \sin \left (f x +e \right )-3 \sqrt {a -b}\, \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, a \right ) \left (a +b \tan \left (f x +e \right )^{2}\right )^{\frac {3}{2}} \cot \left (f x +e \right )^{3}}{3 f \sqrt {a -b}\, \left (a \cos \left (f x +e \right )^{2}+b \sin \left (f x +e \right )^{2}\right ) \sqrt {\frac {a \cos \left (f x +e \right )^{2}-b \cos \left (f x +e \right )^{2}+b}{\left (\cos \left (f x +e \right )+1\right )^{2}}}}\) \(667\)

input
int(cot(f*x+e)^4*(a+b*tan(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/3/f/(a-b)^(1/2)*(4*sin(f*x+e)^2*(a-b)^(1/2)*((a*cos(f*x+e)^2-b*cos(f*x+ 
e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)*b-3*sin(f*x+e)*a^2*arctan(1/(a-b)^(1/2)*(( 
a*cos(f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*(cot(f*x+e)+csc(f*x 
+e)))*cos(f*x+e)+6*sin(f*x+e)*a*b*arctan(1/(a-b)^(1/2)*((a*cos(f*x+e)^2+b* 
sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*(cot(f*x+e)+csc(f*x+e)))*cos(f*x+e)- 
3*sin(f*x+e)*b^2*arctan(1/(a-b)^(1/2)*((a*cos(f*x+e)^2+b*sin(f*x+e)^2)/(co 
s(f*x+e)+1)^2)^(1/2)*(cot(f*x+e)+csc(f*x+e)))*cos(f*x+e)+4*cos(f*x+e)^2*(a 
-b)^(1/2)*((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)*a+3*a 
rctan(1/(a-b)^(1/2)*((a*cos(f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/ 
2)*(cot(f*x+e)+csc(f*x+e)))*a^2*sin(f*x+e)-6*arctan(1/(a-b)^(1/2)*((a*cos( 
f*x+e)^2+b*sin(f*x+e)^2)/(cos(f*x+e)+1)^2)^(1/2)*(cot(f*x+e)+csc(f*x+e)))* 
a*b*sin(f*x+e)+3*arctan(1/(a-b)^(1/2)*((a*cos(f*x+e)^2+b*sin(f*x+e)^2)/(co 
s(f*x+e)+1)^2)^(1/2)*(cot(f*x+e)+csc(f*x+e)))*b^2*sin(f*x+e)-3*(a-b)^(1/2) 
*((a*cos(f*x+e)^2-b*cos(f*x+e)^2+b)/(cos(f*x+e)+1)^2)^(1/2)*a)*(a+b*tan(f* 
x+e)^2)^(3/2)/(a*cos(f*x+e)^2+b*sin(f*x+e)^2)/((a*cos(f*x+e)^2-b*cos(f*x+e 
)^2+b)/(cos(f*x+e)+1)^2)^(1/2)*cot(f*x+e)^3
 
3.4.17.5 Fricas [A] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 308, normalized size of antiderivative = 2.68 \[ \int \cot ^4(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\left [-\frac {3 \, {\left (a - b\right )} \sqrt {-a + b} \log \left (-\frac {{\left (a^{2} - 8 \, a b + 8 \, b^{2}\right )} \tan \left (f x + e\right )^{4} - 2 \, {\left (3 \, a^{2} - 4 \, a b\right )} \tan \left (f x + e\right )^{2} + a^{2} - 4 \, {\left ({\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{3} - a \tan \left (f x + e\right )\right )} \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b}}{\tan \left (f x + e\right )^{4} + 2 \, \tan \left (f x + e\right )^{2} + 1}\right ) \tan \left (f x + e\right )^{3} - 4 \, {\left ({\left (3 \, a - 4 \, b\right )} \tan \left (f x + e\right )^{2} - a\right )} \sqrt {b \tan \left (f x + e\right )^{2} + a}}{12 \, f \tan \left (f x + e\right )^{3}}, \frac {3 \, {\left (a - b\right )}^{\frac {3}{2}} \arctan \left (-\frac {2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {a - b} \tan \left (f x + e\right )}{{\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{2} - a}\right ) \tan \left (f x + e\right )^{3} + 2 \, {\left ({\left (3 \, a - 4 \, b\right )} \tan \left (f x + e\right )^{2} - a\right )} \sqrt {b \tan \left (f x + e\right )^{2} + a}}{6 \, f \tan \left (f x + e\right )^{3}}\right ] \]

input
integrate(cot(f*x+e)^4*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")
 
output
[-1/12*(3*(a - b)*sqrt(-a + b)*log(-((a^2 - 8*a*b + 8*b^2)*tan(f*x + e)^4 
- 2*(3*a^2 - 4*a*b)*tan(f*x + e)^2 + a^2 - 4*((a - 2*b)*tan(f*x + e)^3 - a 
*tan(f*x + e))*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b))/(tan(f*x + e)^4 + 
2*tan(f*x + e)^2 + 1))*tan(f*x + e)^3 - 4*((3*a - 4*b)*tan(f*x + e)^2 - a) 
*sqrt(b*tan(f*x + e)^2 + a))/(f*tan(f*x + e)^3), 1/6*(3*(a - b)^(3/2)*arct 
an(-2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a - b)*tan(f*x + e)/((a - 2*b)*tan(f 
*x + e)^2 - a))*tan(f*x + e)^3 + 2*((3*a - 4*b)*tan(f*x + e)^2 - a)*sqrt(b 
*tan(f*x + e)^2 + a))/(f*tan(f*x + e)^3)]
 
3.4.17.6 Sympy [F]

\[ \int \cot ^4(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\int \left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}} \cot ^{4}{\left (e + f x \right )}\, dx \]

input
integrate(cot(f*x+e)**4*(a+b*tan(f*x+e)**2)**(3/2),x)
 
output
Integral((a + b*tan(e + f*x)**2)**(3/2)*cot(e + f*x)**4, x)
 
3.4.17.7 Maxima [F]

\[ \int \cot ^4(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \cot \left (f x + e\right )^{4} \,d x } \]

input
integrate(cot(f*x+e)^4*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")
 
output
integrate((b*tan(f*x + e)^2 + a)^(3/2)*cot(f*x + e)^4, x)
 
3.4.17.8 Giac [F(-1)]

Timed out. \[ \int \cot ^4(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\text {Timed out} \]

input
integrate(cot(f*x+e)^4*(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")
 
output
Timed out
 
3.4.17.9 Mupad [F(-1)]

Timed out. \[ \int \cot ^4(e+f x) \left (a+b \tan ^2(e+f x)\right )^{3/2} \, dx=\int {\mathrm {cot}\left (e+f\,x\right )}^4\,{\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )}^{3/2} \,d x \]

input
int(cot(e + f*x)^4*(a + b*tan(e + f*x)^2)^(3/2),x)
 
output
int(cot(e + f*x)^4*(a + b*tan(e + f*x)^2)^(3/2), x)